If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-18p^2-21p+15=0
a = -18; b = -21; c = +15;
Δ = b2-4ac
Δ = -212-4·(-18)·15
Δ = 1521
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1521}=39$$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-21)-39}{2*-18}=\frac{-18}{-36} =1/2 $$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-21)+39}{2*-18}=\frac{60}{-36} =-1+2/3 $
| 8x^2+30x-63=0 | | 15x^2+59x-4=0 | | -2/9x+1=5 | | F(-5)=6x^2-2x-1 | | -60x^2-8x+32=0 | | X+4+1/3x=20 | | 80-2(x-40)=4(x-50) | | 5x-7x+43=9 | | x^2+5x-162=0 | | 67=(16x-10) | | F(4)=4x+3x-1 | | (N-12)(3n+21)=0 | | 36=3/4y= | | 6^4x=1296 | | -2x+8=-4x-5 | | (w-5)^2=(2w^2)-14w+13 | | w^2-14w=-38 | | −2x=2 | | x/4x+4=2x+10 | | 8^(x-4)=16 | | 20x+1=110 | | |15x+3|=7 | | -2(6x+2)=32 | | -2(6x+2)=32 | | 15x-2+4=7x-3 | | 7-4x=2x+1 | | 4x^2-1x-7=0 | | 441=81+18x | | 3^x=1260 | | -119=1-6(3n-4) | | 4.9+z=-9.00 | | (5x+10)=55 |